We are a family-owned, independent company with over 30 years experience, operating across London and the south-east. Our specialist, expert craftsmen, including two generations of our family, work with stone, brick, concrete and all other related materials on the restoration, conservation, and cleaning of listed and historic, old and new buildings.

We employ both traditional skills and the latest technology whenever it offers performance and cost advantages that do not compromise aesthetic quality or long-term durability.

We work for private individuals, companies (large and small), local and national government, educational and ecclesiastical bodies and heritage organisations across all building types including residential, commercial, heritage landmarks and new developments. We also lend our specialist expertise to major construction schemes, working under lead contractors.

And we are proud to be as renowned for our courtesy and professionalism as we are recognised for our skill, knowledge and craftsmanship.

Lee Regan, Managing Director
Chris Regan, Founder
Wherever we stand, we stand on stone. And at this point in our story we don’t mean the ubiquitous grey paving slabs criss-crossing every town; the medieval cobbles of older cities; the gravel and gleaming York Stone slabs of paths and patios or even the concrete of car parks. No, here we are taking a brief look at the crust separating us from our planet’s molten interior – whether it’s the Cretaceous chalk of the Downs, the sand and pebbles of our coast or the basalt lava of Skye and Mull.

But natural stone doesn’t just stand passively between us and oblivion, it is durable, practical, attractive, versatile and defines much of our architectural landscape as it does of our natural topography.

This is not surprising, given Britain’s extraordinarily variegated bedrock that is the equal of most and the envy of many. This country’s long tradition of creating remarkable buildings continues and we are at the heart of their preservation and creation. So, what about the stone that built Britain?

From Stonehenge to the Shard:

REIGATE STONE

“A soft calcareous sandstone occurring in the upper greensand beds at the foot of the North Downs.”

Quarried underground and used in early churches (St. Clement’s Church, West Thurrock, right), the Tower of London, Hampton Court and other high-status buildings, Reigate Stone last featured in a new construction project in 1939. Even Sir Christopher Wren remarked on its susceptibility to the atmosphere. The challenge today is to conserve what remains – much has been replaced with Bath Stone, Chicks Grove limestone or other stones.

KEN TISH RA GSTO NE

“A hard grey limestone found in the Hythe Beds of the Lower Greensand”

The Romans used it for blockwork as did the constructors of many a landmark building including Westminster Abbey, the Tower of London (above), Dover Castle, Knole House, Ightham Mote and Maidstone Prison. Its traditional use in buildings continues today, though its unlikelihood as a modern monolith will repeat Henry VIII’s 1419 order for 7,000 Ragstone cannonballs.

BATH STONE

“An oolitic limestone comprising granular fragments of calcium carbonate.”

War, distinctive and honey-coloured, it comes from Somerset and can be spotted in countless churches, houses and public buildings across Southern England – not just in Bath (Royal Crescent, above). It isn’t just durable and magnificent, it is also practical as a freestone. It can be squared up (cut) in any direction.

The Stone that Built Britain

PORTLAND STONE

“A white-grey, fossil-rich limestone from the Tithonian stage of the Jurassic period, quarried on the Isle of Portland, Dorset.”

Since the Romans, this has been one of the essential building materials of our country and beyond. Its many credits include: the Palace of Westminster (1347), the Tower of London (1349), Exeter Cathedral (1300s), St. Paul’s Cathedral (1660s), The Monument (1677, right), British Museum (1753), Somerset House (1792), Buckingham Palace (1854), and The Cenotaph (1920).

MARBLE

“A non-foliated metamorphic limestone composed of recrystallized carbonate minerals, most commonly calcite.”

While Purbeck Marble from Dorset features in the vast majority of southern cathedrals, and County Durham’s black Fotherby Marble has decorated churches for over seven centuries, most of England’s marble has been imported, mainly from Italy. From status to decorative detail and on to more substantial block-work (Marble Arch, above), marble continues to add both classical elegance and shimmering delight to our buildings and structures.

YORKSTONE

“A tight-grained, Carboniferous sedimentary sandstone from Yorkshire consisting of quartz, mica, feldspar, clay and iron oxides.”

Hard-wearing and exceptionally weather-resistant, it was initially favoured in its Northern heartland as a stone roofing slate (Thorakstone). Its primary use changed to paving and walling when it reached London and the South (Yorkstone terrace at Windsor Castle, above).

GRANITE

“A common felsic intrusive igneous rock, at least 20% quartz and up to 65% alkali feldspar. Granular, phaneritic and predominantly white, pink or grey.”

Egyptians were using granite by 3,000 BC; 4,000 years later the Chola Indians built the world’s first granite temple. But in the West, we had to wait until the early 18th century and the invention of steam-powered cutting tools before its full potential could be realised. It soon became a stone of choice for monuments (Nelson’s Column, right) and, in the case of Aberdeen, an entire city.
Restoration and conservation are similar – conservation can entail some restoration and restoration will, itself, conserve – but they are not the same. It’s a matter of degree, flexibility and even legislation. To conserve a building is to preserve it as it now is; to restore a building is to return it to how it was at a chosen point in its history.

So, for example, how alighting brickwork or crumbling stucco is addressed will depend upon whether the building is Grade I, Grade II*, Grade II or non-listed, whether it is or isn’t in a conservation area etc. If we are conserving, then only those elements that are irredeemably compromised and/or compromising the structure itself can be replaced and even then only with identical material. But if we are restoring, we will have greater flexibility and be able to use a wider range of materials including reconstituted stone. The relative – and hotly contested – merits of conservation and restoration are at the heart of the Heritage debate and understanding their subtleties is essential to our work and to the advice we give.

We encompass all aspects of both conservation and restoration up to and including the most delicate and detailed challenges – window tracery and damaged statuary are well within our scope. Cleaning is carried out according to the most rigorous of approved standards as are repairs to lime mortar, pointing and render. We have even developed our own extensive range of restoration mixes to suit all types of natural and manufactured stone and match them in line, colour and detail.

Heritage Buildings
Our long-standing and continuing work with historic and listed buildings, now into its fourth decade, includes many belonging to the National Trust and English Heritage and stands testament to our position as a leading stone restorer. To date we have worked on landmark sites including Lambeth Palace, the British Museum, the House of Commons, Polesden Lacey, Hampton Court, and Windsor Castle.

Stone replacement
Sometimes, it is too late to save (part of) a building, structure or statue and it must be replaced. This can involve anything from relatively simple like-for-like replacement to heritage standard carving of new detailing. As discussed above, work is always carried out in line with the building’s status.

Modern Buildings
Modern buildings can also need restoration or, indeed, conservation. They may be built with a wider range of materials, but the principles are the same. Because of its prevalence and particular challenges, we discuss concrete separately.

Whatever a building’s age, whatever its constituent materials, conservation or restoration is the cost-effective way to maximise its long-term integrity, use and appeal.
The one aspect of modern stonework that’s as reliant on new technology as traditional craftsmanship is cleaning. Whether cleaning is the first stage of full restoration or an end in itself, our expertise spans the centuries, extending from cleaning historic monuments and listed buildings to the brick, stone and concrete of modern homes and offices; from the weather-stained marble of historic statues to the final clean of newly finished facades and stonework. Our Cleaning Team is available for single projects, emergency call-outs and planned maintenance.

Heritage Cleaning
Cleaning historic and/or listed buildings requires respect, research, understanding and specialist skills. We employ specific techniques and treatments dependent on the type of stone. Limestone and sandstone, for example, require different handling. Furthermore, all the chemicals we recommend are designed to be biodegradable and animal and human friendly in use. They are also only available to accredited trade professionals – nothing on the shelves at a local DIY store can match their performance and few will have been subjected to the same level of material-specific testing.

Cleaning Systems
All our cleaning procedures are industry approved and accredited by Stone Health or Restorative Techniques. We are experienced in using cleaning systems including TORC (JOS) and DOFF. Our Clients, though, do have a choice. Our decades of experience (predating most of these systems), including extensive works on heritage buildings, means we can also offer more traditional, and equally effective, cleaning techniques. The choice is yours.

Specialist New Build Facade Cleaning
The facade of any new stone, brick or concrete building will need a final clean once construction work has finished. This is to remove the traces left by the various trades involved and to remove and prevent the re-occurrence of efflorescence or other issues arising from new work.

Protective Coatings & Impregnations
From the first moment of a building’s life, it is under constant attack from wind, weather, water and pollution and while stone, brick and concrete are robust, slow deterioration is inevitable. This process, though, can be slowed even further by applying specialist (invisible or decorative) protective coatings that halt water penetration and act as a buffer to atmospheric corrosion. They can be applied after cleaning or as a preventative measure and are suitable for buildings of any age. Some new coatings are even accepted by individual Conservation Officers for use on heritage and listed buildings.

Main picture: left: The statue of Sir Winston Churchill on The Green at Westerham, before cleaning the plinth.
Main picture: right: The statue of Sir Winston Churchill on The Green at Westerham, after cleaning the plinth.
STUCCO

An English Tradition

STUCCO: A mix of sand (or another base such as powdered marble or ground glass), lime and [Portland] cement applied while wet to create a durable exterior rendering for masonry in imitation of fine stonework and to mould into architectural decorations.1

Mention stucco, that indispensable and versatile building material, and many may think first of Renaissance Italy and, perhaps, of the finely detailed friezes of Palladian architecture. After all, while Andrea Palladio (1508-1580) built his reputation on his genius, he built his villas with stucco. A lot of stucco. For example, he constructed in stucco-clad brick rather than marble-clad stone and fashioned architraves out of wood, covered with straw lathing and, yes, stucco. His buildings remain fresh, invigorating and sound. And continue to fool their many visitors.

Stucco has been at the heart of the English tradition since the Norman Conquest – first in castles and cathedrals, a little later in ordinary homes. In the mid-1600s, Western Europe was in the thrall of the Baroque’s exaggerated grandeur while England remained under the thumb of Cromwell’s puritanism. Adopting such exuberant architecture would have to wait until the Restoration in 1660. But we’d come to the party late and even in the hands of masters like Wren, Vanbrugh and Hawksmoor, English Baroque was a more restrained, toned-down celebration. Even so, stucco was enthusiastically embraced and as the 18th century progressed and we turned to neo-classicism, stucco became a vital element of ecclesiastical, official and domestic architecture – as it is today – and acquired the definition above.

What is Rendering?
Rendering is the specialist craft of applying stucco across larger, flat and generally (but not exclusively) exterior surfaces.

Types of Stucco

Traditional stucco (render) was perfected between 1775 and 1850. To this day it has a basic mix of 6 parts sand, 1 part cement and 1 part lime. But, there is great variety. By the middle of the 19th century, four basic types of stucco (with further variations) were in use.

LIME/SAND

This early stucco mix dates from the time of Inigo Jones in the early 17th century.

OIL-BASED

In the 18th century, patented versions emerged in which boiled linseed oil replaced water. The Adam brothers’ own blend was called Liardet’s Mix and used extensively in Portland Place.

PORTLAND CEMENT

Just as Roman Cement stucco was, like stucco in general, falling out of fashion, Portland Cement was developed and was widely used for decorative stucco.

STUCCO:
A mix of sand (or another base such as powdered marble or ground glass), lime and [Portland] cement applied while wet to create a durable exterior rendering for masonry in imitation of fine stonework and to mould into architectural decorations.

The Grand Brighton Hotel now restored to its Victorian splendour

The National Trust’s Polesden Lacey, a magnificent Regency country house, extensively remodelled in 1906

Prelude Stone
This hydraulic binder is made by firing clay and limestone together and grinding the resulting clinker with small quantities of other materials. It is now predominant across the world.

Once the precise, perfect mix has been created, it must be skillfully applied to ensure effective adhesion from the initial to the top coats. The appropriate finish can then be executed: smooth or patterned; stippled, gloss or matt; sand, marble, clay, lime wash, etc.

ACRYLIC RENDER

Acrylic renders are now widespread. They cannot, of course, be used on protected heritage buildings but their advantages for non-listed buildings include improved water resistance, adhesion, flexibility and strength. They dry and cure in two days – traditional render requires 28 – and are suitable across a broader range of substrates including concrete, cement blocks, all forms of autoclaved concrete paneling and, with proper preparation, cement sheathing and the latest polymer exterior cladding.

Depending on type, they can be rolled, trowelled, sponged or even sprayed on and, like traditional render, take a variety of plain, patterned or textured finishes: matt, gloss or stippled.

STUCCO

Whether the building is ancient, old or new, every element, be it traditional lime mouldings, modern cast ornamentation or render, is treated appropriately and expertly. That means identifying and replicating the original mix and applying with equal precision and technique.

Checking stucco regularly is advisable as once deterioration starts, it spreads rapidly and early intervention will reduce costs dramatically.

STUCCO REPAIR & RESTORATION

When stucco deteriorates beyond restoration, it must be replaced. Large elements may have to be cast off-site while traditional forms (horse moulds) will be made for the on-site replication of pattern profiles.

STUCCO PAINTING

Stucco is generally painted and, not surprisingly, when repainting is necessary, both broad traditions and the building’s specific history must be followed. Of course, if the stucco is part of a new or recent building then a broader palette (including brilliant white) is available and can be applied using more industrial style methods.

PRE-CAST STUCCO

Of course, bespoke, pre-cast stucco designs can also be fashioned for new buildings. Typical features for pre-casting include:

- Copings, balustrading and lintels
- Heads, cills and quoins
- Cornices, string courses and corbels
- Columns, pier caps and finials.

Main picture, right: Extensive stucco restoration at Luton Hoo, Bedfordshire

Main picture, left: Extensive stucco restoration and replacement of the stucco cornicing and decorative detail
A ceramic masonry building material of glazed terracotta used as a decorative skin on buildings. Sometimes referred to as ‘architectural ceramics’. Terracotta, literally ‘cooked earth’, has been in use, with little change, for millennia to create utilitarian domestic objects; simple statues and bricks, blocks and tiles for building. Yet it wasn’t until 1879 that England saw it undergo a truly radical development...

LEEDS, 1859. When fire clay was discovered in a local coal mine, the Burmantofts Pottery was opened to manufacture pipework for the construction industry. The firm expanded, diversified and experimented with glazing. In 1879 it launched glazed terracotta tiling for both internal and external cladding. Of course, similar glazing techniques had been used on ceramics for over 6,000 years (and called faience) but 1879 was the birth of architectural faience. It was immediately championed by architects and embraced by the public. It was durable, impervious and exceptionally resistant to the blackening effect of city smoke. Cleaning was consequently simple – when it now, a squirt of water did the job. It was also easier to handle than stone, set quickly and cost less. But it wasn’t just practical. Faience could be cast with intricate details of form or texture and, of course, offer a wide choice of colour through the glazing. Faience made full use of the distinctive palette of bottle greens, rich reds and burnt ochres that,in many ways, defines the late-Victorian architectural aesthetic as anyone who has travelled on the London Underground will appreciate. Architect Alfred Waterhouse used Burmantofts faience for both the Yorkshire College (1883) in Leeds and the National Liberal Club (1884) in London. The Savoy Hotel was built in 1889 with a faience exterior. By then, Burmantofts had ceased production but other potteries had moved in. Faience crossed the Atlantic where it was greeted with equal enthusiasm. Both New York’s Woolworth Building (1913) and Chicago’s Wrigley Building (1924) are clad in gleaming white faience. But this was its last hurrah. Despite proven versatility of both construction and design, by WWII it had fallen out of favour and the architects of the post-modernist, post-war landscape had little, if any, use for it. Ceramic veneer tiles, developed in the 1930s, continue to be used in kitchens and bathrooms. So faience proved to be a glorious, but short-lived, fashion and in England there are relatively few grand buildings showing off its unique splendour – and even fewer new buildings (though there are some including Grayson Perry’s A House for Essex) featuring this remarkable material. What’s left needs to be cherished and conserved and we are delighted to be playing our part.
For over 10,000 years, bricks have shaped our built environment and the majority of buildings standing today are made of, or certainly feature, brick...

Know your specialism

The building industry is made up of many specialist trades working together with mutual respect: carpenters stay clear of masonry; plumbers don’t touch wood; electricians won’t go near a gas main and we leave bricklaying to the bricklayers. We come in once they have been laid – whether it was last week or a century ago - and specialise in brick cleaning, and restoration; pointing and repointing...

A Brick is a Brick is a Brick?

To the uninitiated, colour and weathering aside, one brick wall or facade may look like any other. But we work with bricks, old and new, every day and recognise their many varied forms and, critically, understand that the type of brick dictates how it must be treated.

Understanding variety

The base materials of traditional bricks are essentially fixed: sand, clay, lime, iron oxide and magnesia. But the proportion of each of these can vary by double or more. And the make-up of the brick (including the type of sand and clay) dictates the type of mortar, the style of pointing and the cheering materials that can be used. For example, London Stock bricks (also called Yellow Bricks), are porous. So, too, is their traditional lime mortar. The consequence is that they should be flush pointed so that water runs away and cannot collect in the joints. And if they need replacing as part of restoration, the replacement bricks must be the same or at least of a sympathetic, compatible material. Get this right, and you have a waterproof wall. Get it wrong....

The same principles hold true for all types of bricks, from Fareham Red Brick (used on the facade of London’s Royal Albert Hall) to regional bricks like the exceptionally hard and impervious Staffordshire Blue Brick – the historic brick of choice for foundations and canals. They’re still used today for paving, facing, capping and, of course, decoration.

Bricks are also fashioned for specific functions: Common Bricks to be hidden within the internal structure; Face Bricks to create a distinctive facade; Engineering Bricks that are exceptionally strong, impervious and resistant to acid (like Accrington Bricks).

Mortar

Lime mortar may only last for 50 years when exposed to acidic rain (prevalent in London and other conurbations) and repointing will be necessary. In recent years some have used a stronger mortar made with Portland cement in an attempt to extend the life of the new pointing. Unfortunately, the disparity in strength between the new and the remaining mortar causes the brick surface to spall. As specialists, we are aware of such pitfalls.

Size

Brick size, too, varies. While today’s ‘standard’ British brick is 215 x 102.5 x 65 mm, laid with a 10 mm mortar joint (producing a finished ration of 6.5:2), variations are not uncommon, requiring adjustment and care. Older buildings will often feature

The glorious variety of the everyday

BRICK: “A building material used in masonry construction. Traditionally, bricks were composed primarily of clay, but now the term can denote any rectangular unit laid in mortar.”
as little more than grouting on a grand scale.

It starts, of course, with getting the mortar right but how that mortar is applied is equally important. We’ve seen that choosing the right finish can determine durability – pointing is brickwork’s weakest link – but it also determines the final aesthetics. And, on Heritage buildings, it has to be historically true. Pointing is a tradition in its own right and knowing whether to go for Flush, Recessed, Weather Struck, Bird Beak or an artisan pointing like Penny Struck or Tuck, is essential. Fortunately, in the hands of a craftsman, all these choices are available.

New buildings
It is worth mentioning that our repointing skills, vital for the restoration of old or Heritage buildings, are equally applicable to pointing a brand new structure. We are experts in both.

Cleaning
As with any other stone material, cleaning brickwork is a skilled and surprisingly delicate operation. Brick is meant to weather and gain a patina, that thin layer of benign wear that both endures and creates brick’s distinctive and attractive character. Hailey-handed cleaning can easily destroy that patina or, worse, create a miss-matched patchwork of old and new.

How the mortar is treated is equally important as it is even more at risk from unsympathetic treatment. And, of course, ordinary buildings of no special historic interest or particular aesthetic appeal must still be cleaned sympathetically. And, as mentioned, all the chemicals we recommend are designed to be biodegradable and animal and human friendly in use.

Restoration & Replacement
As with all stonework, brickwork may be beyond just cleaning and require repair or replacement. Naturally, we have the skill, knowledge and experience to do this seamlessly for Heritage and Listed stock.

Heritage Brick Restoration
To sum up, we have the proven expertise to carry out cleaning, restoration, repointing and replacement of listed and protected brickwork to the highest conservation standards.

Brick’s New Generation
While new manufacturing methods and formulae have not replaced what we still regard as traditional bricks, they are writing a new chapter in brick’s long history. Calcium-silicate bricks are neither fired nor made from clay. Rather, they are a blend of sand, quartz, crushed flint (or siliceous rock) bound with lime. They can also be coloured with the addition of selected minerals. Once the lime has hydrated, the mixture is pressed into moulds and sent to the autoclave for curing. They are not commonly used in the UK, but their proven track record in Sweden, Canada, America and India suggests that may change.

Concrete bricks are also cured rather than fired, though using low-pressure steam. They are able to withstand the harshest of environments and can be made in a range of shapes, sizes, colours and finishes that clay bricks cannot match. However, they contract and expand more and movement joints need to be placed every 5 to 6 metres.

Our final example of recent developments is decidedly low-tech and has more in common with bricks first incarnation. Compressed Earth Blocks are just that – local earth mixed with enough water to dampen it and then formed in either a mechanical or manual press. For added strength a little cement binder is added to create Stabilised Compressed Earth Blocks.
Concrete may be one of the defining materials of modern architecture, but it was used first by the Nabataean Bedouins 8,500 years ago. It became the building block of classical civilisations from Egypt to Assyria, Greece to Rome and, a little later, of Milton Keynes, city tower blocks and many a contemporary housing estate.

Concrete is essentially a mixture of two ingredients: [Portland] cement and an aggregate such as crushed stone, gravel, sand, slag or even recycled concrete. The Romans also added horse hair (to reduce cracking while it hardened) and blood (to improve frost resistance) to their opus caementicium.

In 1853 François Coignet, a French industrialist, embedded iron bars in the unset mix and gave us reinforced concrete – a major advance that, as we’ll see, has its own problems...

But while concrete’s basic formulation may be simple, the variety and proportions of its mix are complex. To clean or repair any material, you first need to know exactly what that material is. And concrete is no different...

Concrete Cleaning
Given concrete’s ancient legacy, it should be no surprise that its care and cleaning has evolved down the centuries, right up to the present day and the introduction of advanced cleaning methods. But we are also expert in longer-standing, and equally effective, techniques. Either way, we can address discolouration, efflorescence, acid staining, etc.

Concrete Repair
Our work often incorporates more invasive treatments including flexible joint sealing and crack injection to address flaking, spalling and sealing issues.

Concrete ‘Cancer’
Many concrete buildings constructed over the last 50 years or so are in trouble. Unfortunately, some contractors back then cut corners, threw up buildings with little care and left them fundamentally compromised. Some have had to be demolished. Many others are suffering from the effects of one or more of the consequences of poor-quality concrete construction. The problem generally begins with water penetrating the concrete, starting a series of chemical reactions:

\[
\text{CaO (s) + H}_2\text{O (l)} \rightarrow \text{Ca(OH)}_2(\text{aq})
\]

That resulting toxic solution has reached the external surface. It reacts further with the air to:

\[
\text{Ca(OH)}_2(\text{aq}) + \text{CO}_2(\text{g}) \rightarrow \text{CaCO}_3(\text{s}) + \text{H}_2\text{O (l)}
\]

and cracks start to appear, letting in yet more water. At the same time, stalactites form inside causing even greater structural stress.

The Oldest New Material there is

Conrete: “A building material made from a mixture of broken stone or gravel, sand, cement and water, which can be spread or poured into moulds and forms a stone-like mass on hardening.”

In 1853 François Coignet, a French industrialist, embedded iron bars in the unset mix and gave us reinforced concrete – a major advance that, as we’ll see, has its own problems...

But while concrete’s basic formulation may be simple, the variety and proportions of its mix are complex. To clean or repair any material, you first need to know exactly what that material is. And concrete is no different...

Concrete Cleaning
Given concrete’s ancient legacy, it should be no surprise that its care and cleaning has evolved down the centuries, right up to the present day and the introduction of advanced cleaning methods. But we are also expert in longer-standing, and equally effective, techniques. Either way, we can address discolouration, efflorescence, acid staining, etc.

Concrete Repair
Our work often incorporates more invasive treatments including flexible joint sealing and crack injection to address flaking, spalling and sealing issues.

Concrete ‘Cancer’
Many concrete buildings constructed over the last 50 years or so are in trouble. Unfortunately, some contractors back then cut corners, threw up buildings with little care and left them fundamentally compromised. Some have had to be demolished. Many others are suffering from the effects of one or more of the consequences of poor-quality concrete construction. The problem generally begins with water penetrating the concrete, starting a series of chemical reactions:

\[
\text{CaO (s) + H}_2\text{O (l)} \rightarrow \text{Ca(OH)}_2(\text{aq})
\]

that eat the concrete from the inside. Once the resulting toxic solution has reached the external surface, it reacts further with the air to:

\[
\text{Ca(OH)}_2(\text{aq}) + \text{CO}_2(\text{g}) \rightarrow \text{CaCO}_3(\text{s}) + \text{H}_2\text{O (l)}
\]

and cracks start to appear, letting in yet more water. At the same time, stalactites form inside causing even greater structural stress.

Main picture: left: 20th Century celebration of concrete, The Royal National Theatre, London
Above: New concrete coping stone to a retaining wall at Cross Rail, London
Below: WRIW concrete Acoustic Mirrors at Denge, near Dungeness

The Oldest New Material there is

Concrete: “A building material made from a mixture of broken stone or gravel, sand, cement and water, which can be spread or poured into moulds and forms a stone-like mass on hardening.”

In 1853 François Coignet, a French industrialist, embedded iron bars in the unset mix and gave us reinforced concrete – a major advance that, as we’ll see, has its own problems...

But while concrete’s basic formulation may be simple, the variety and proportions of its mix are complex. To clean or repair any material, you first need to know exactly what that material is. And concrete is no different...

Concrete Cleaning
Given concrete’s ancient legacy, it should be no surprise that its care and cleaning has evolved down the centuries, right up to the present day and the introduction of advanced cleaning methods. But we are also expert in longer-standing, and equally effective, techniques. Either way, we can address discolouration, efflorescence, acid staining, etc.

Concrete Repair
Our work often incorporates more invasive treatments including flexible joint sealing and crack injection to address flaking, spalling and sealing issues.

Concrete ‘Cancer’
Many concrete buildings constructed over the last 50 years or so are in trouble. Unfortunately, some contractors back then cut corners, threw up buildings with little care and left them fundamentally compromised. Some have had to be demolished. Many others are suffering from the effects of one or more of the consequences of poor-quality concrete construction. The problem generally begins with water penetrating the concrete, starting a series of chemical reactions:

\[
\text{CaO (s) + H}_2\text{O (l)} \rightarrow \text{Ca(OH)}_2(\text{aq})
\]

that eat the concrete from the inside. Once the resulting toxic solution has reached the external surface, it reacts further with the air to:

\[
\text{Ca(OH)}_2(\text{aq}) + \text{CO}_2(\text{g}) \rightarrow \text{CaCO}_3(\text{s}) + \text{H}_2\text{O (l)}
\]

and cracks start to appear, letting in yet more water. At the same time, stalactites form inside causing even greater structural stress.
And if the cement is too alkaline, it will react with the air’s carbon dioxide, producing tell-tale star-shaped cracks. Ironically, reinforced concrete is particularly at risk. The bars added for reinforcement will rust once the integrity of the surrounding concrete has been compromised, causing them to expand and the concrete to spall.

Of course, once concrete starts to crack (for whatever reason), it also suffers the effects of water freezing and expanding, accelerating the cracking process.

Fortunately, the industry has learned its lesson and contemporary concrete construction has eradicated these problems. Too late for many buildings, but we have the expertise to remedy those that are in trouble, but not yet past the point of no return.

Regent Street Disease
Regent Street Disease (or, if you are in Manchester, Deansgate Disorder) is another ailment now manifest in older concrete buildings. RSD affects steel-frame constructions with a non-structural but heavy facade of, say, Portland Stone, brick or faience. Once water has penetrated the facade and breached any protective coating originally applied to the steel, corrosion sets in. While the problem has been designed and engineered out of new buildings, many older, and iconic, structures are threatened both here (The BBC Building in Portland Square for one) and abroad (many of Chicago’s skyscrapers are at risk).

If the cement is too alkaline, it will react with the air’s carbon dioxide, producing tell-tale star-shaped cracks. Ironically, reinforced concrete is particularly at risk. The bars added for reinforcement will rust once the integrity of the surrounding concrete has been compromised, causing them to expand and the concrete to spall.

Of course, once concrete starts to crack (for whatever reason), it also suffers the effects of water freezing and expanding, accelerating the cracking process.

Fortunately, the industry has learned its lesson and contemporary concrete construction has eradicated these problems. Too late for many buildings, but we have the expertise to remedy those that are in trouble, but not yet past the point of no return.

Regent Street Disease
Regent Street Disease (or, if you are in Manchester, Deansgate Disorder) is another ailment now manifest in older concrete buildings. RSD affects steel-frame constructions with a non-structural but heavy facade of, say, Portland Stone, brick or faience. Once water has penetrated the facade and breached any protective coating originally applied to the steel, corrosion sets in...
Until recently, inspecting buildings could be time-consuming, dangerous, expensive and invasive, especially at high level. Scaffolding was often required and, even then, rooftops and facades could remain inaccessible. And buildings at risk of (further) collapse could be off-limits. The use of camera drones has changed all that...

We work with experienced, Civil Aviation Authority approved drone pilots. They fly advanced drones carrying ultrahigh definition cameras for video and still recording. Their manoeuvrability, especially in expert hands, provides multi-angle access to all areas – including those too dangerous and/or inaccessible for direct physical inspection.

And drone surveys are genuinely affordable, even for single property homeowners. Results are always informative – they’ll give the green light or reveal problems.

Our clients commission a survey for many purposes:
- Condition surveys including pre-purchase
- Before, during and after works. A before and after record offers a definitive picture of what has and hasn’t been done – and the quality of workmanship employed. Progress checks provide necessary quality control and can prevent costly premature decisions. How often is scaffolding taken down only to be needed again?
- Snagging
- Regular ‘health-check’ inspections
- Damage assessment
- Insurance claims and for...
- Pictures and footage for advertising, marketing and PR across all media, including sales literature for residential and commercial property

Our reputation is built on our craftsmanship – our clients expect nothing less. But we are also a service company and therefore have a responsibility to make it as easy, convenient and cost-effective as possible for our clients to access that craftsmanship. Hence our Additional Services...

Our drone pilots are licensed and fully insured, carrying £5m public liability.

Availability
You can commission an Aerial Survey whether or not we are working on your property.

Owners of adjoining properties can commission a shared survey making it even more cost-effective. In this case, all owners will receive the footage taken across all the relevant properties.

Copyright, Privacy & Security
- All footage and still photography taken on a drone inspection are your copyright, and can be used as you wish without any additional paperwork or cost
- Once we are finished, all recorded material is passed to you. We do not keep copies

Pre-Planned Maintenance
If you own, or are responsible for, anything from a larger building to a property portfolio, Pre-Planned Maintenance offers cost-effective asset management. Advance scheduling of necessary work ensures buildings are kept sound, fit-for-purpose and functioning – and allows more efficient budgeting. Something as simple as keeping guttering clear can save thousands.

Preventative Inspections
Just as we all benefit from a regular check-up, so too do buildings. Inspections offer the reassurance that all is well and an early warning of problems. After all, unforeseeable catastrophes aside, major problems always start as minor ones. And minor problems cost a lot less to put right.

Emergency Services
Whether it’s the sudden appearance of cracks or offensive graffiti, fallen masonry, a suspect chimney pot or any other problem, our team is ready and available to deal with your emergency.

By arrangement, we offer a 24/7, 365 days a year emergency service with fast, any-day response to organisations, institutions and businesses that need this further assurance.
We will not pretend our work has no environmental impact. Of course it does. But we do minimise that impact...

True Sustainability
What is environmentally preferable: sustain a failing building through remedial work or let nature and time take their course until it becomes a redundant shell or pile of rubble? We believe nothing is more sustainable than extending the life of something already built and capable of serving its purpose long into the future.

So, if we are working on a Grade I listed building and need to replace, say, a section of Carrera marble, than we will use (as we have to) stone imported from the Italian quarry. But while even that little lump of marble will have a disproportionate carbon footprint, it will be good long into the future.

No Invasive Chemicals
All the chemicals we recommend are designed to be biodegradable and animal and human friendly in use.

Minimising Our Carbon Footprint
In addition:
• We don’t waste energy – environmental impact aside, it’s too expensive
• We choose locally quarried stone and locally sourced materials when we have the option
• The traditional techniques we favour are inherently benign
• We always establish and promote the lowest-impact solution

Conclusion
So, yes, we have a carbon footprint. But that footprint is minimised and then amortised over the decades – centuries – of additional life we give to the buildings, homes, statues and other landmarks on which we work.

And, of course, we will gladly provide an Environmental Impact and Sustainability Statement for your work if requested.

Prelude Stone is a founder patron of the Chartwell Cancer Trust (CCT)
www.chartwellcancertrust.co.uk